On the determinant of q-distance matrix of a graph

نویسندگان

  • Hong-Hai Li
  • Li Su
  • Jing Zhang
چکیده

In this note, we show how the determinant of the q-distance matrix Dq(T ) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85–88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph G by adding the weighted branches to G, and so generalize in part the results obtained by Bapat et al. [R.B. Bapat, S. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193– 209]. In particular, as a consequence, determinantal formulae of q-distance matrices for unicyclic graphs and one class of bicyclic graphs are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

On the spectra of reduced distance matrix of the generalized Bethe trees

Let G be a simple connected graph and {v_1,v_2,..., v_k} be the set of pendent (vertices of degree one) vertices of G. The reduced distance matrix of G is a square matrix whose (i,j)-entry is the topological distance between v_i and v_j of G. In this paper, we compute the spectrum of the reduced distance matrix of the generalized Bethe trees.

متن کامل

Altan derivatives of a graph

Altan derivatives of polycyclic conjugated hydrocarbons were recently introduced and studied in theoretical organic chemistry. We now provide a generalization of the altan concept, applicable to any graph. Several earlier noticed topological properties of altan derivatives of polycyclic conjugated hydrocarbons are shown to be the properties of all altan derivatives of all graphs. Among these ar...

متن کامل

Resistance matrix and q-Laplacian of a unicyclic graph

The resistance distance between two vertices of a graph can be defined as the effective resistance between the two vertices, when the graph is viewed as an electrical network with each edge carrying unit resistance. The concept has several different motivations. The resistance matrix of a graph is a matrix with its (i, j)-entry being the resistance distance between vertices i and j. We obtain a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014